ОПТИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПЛЕНОК ПОЛИЭФИРЭФИРКЕТОНА, ИМПЛАНТИРОВАННЫХ ИОНАМИ НИКЕЛЯ

А.С. Ким¹⁾, М.Г. Лукашевич¹⁾, В.Б. Оджаев¹⁾, В.Ф. Валеев²⁾, Р.И. Хайбуллин²⁾

¹⁾Белорусский государственный университет,
пр. Независимости 4, Минск 220030, Беларусь,
kimandrej03@mail.ru, Lukashevich@bsu.by, Odzaev@bsu.by

²⁾Казанский физико-технический институт,
Сибирский тракт 10/7, Казань 420029, Россия,
valeev@kfti.knc.ru, rik@kfti.knc.ru

Исследованы оптические характеристики тонких (25 мкм) пленок полиэфирэфиркетона имплантированных ионами никеля с энергией 40 кэВ в интервале доз $2.5 \times 10^{16} - 1.5 \times 10^{17}$ см $^{-2}$ при плотности ионного тока 4 мкА/см 2 . Интегральный коэффициент пропускания уменьшается в 8 раз, а отражения — в 3 и 2 раза от имплантированной и не имплантированной сторон. Узкая полоса отражения при $\lambda = 315$ нм наблюдается от обоих сторон с интенсивностью в 5 раз ниже. С ростом дозы в отражении имплантированной стороной она смещается на $\Delta\lambda = 20$ нм в коротковолновую область и на $\Delta\lambda = 55$ нм в длинноволновую в отражении не имплантированной стороной. Обнаружена широкая полоса отражения при $\lambda = 820$ нм, обусловленная образованием включений никеля, которая сдвигается в область длинных волн до $\lambda = 2400$ нм с увеличением дозы.

Ключевые слова: пленка; полиэфирэфиркетон; имплантация; ион; никель; пропускание; отражение.

OPTICAL PROPERTIES OF POLYESTERESTERKETONE FILMS IMPLANTED WITH NICKEL IONS

Andrei Kim¹⁾, Mikhail Lukashevich¹⁾, Vladimir Odzhaev¹⁾, Valeri Valeev²⁾, Rustam Khaibullin²⁾

¹⁾Belarusian State University, 4 Nezavisimosti Ave., 220030 Minsk, Belarus
kimandrej03@mail.ru, Lukashevich@bsu.by, Odzaev@bsu.by

²⁾Kazan Physical-Technical Institute of RAS,
10/7 Sibirsky tract, 420029 Kazan, Russia,
valeev@kfti.knc.ru, rik@kfti.knc.ru

The optical properties of thin (25 microns) polyetheretherketone films implanted with Ni ions with an energy of 40 keV in the dose range of $2.5 \times 101^6 - 1.5 \times 101^7 \text{ cm}^{-2}$ at an ion current density of $4 \mu \text{A/cm}^2$ have been studied. The integral transmission coefficient is reduced by 8 times, and reflections — by 3 and 2 times from the implanted and non-implanted sides. A narrow reflection band at $\lambda = 315 \text{ nm}$ is observed from both sides with an intensity 5 times lower. As the dose increases in the reflection of the implanted side, it shifts by $\Delta\lambda = 20 \text{ nm}$ to the short-wavelength region and by $\Delta\lambda = 55 \text{ nm}$ to the long-wavelength region in the reflection of the non-implanted side. A wide reflection band was found at $\lambda = 820 \text{ nm}$, due to the formation of nickel inclusions, which shifts to the region of long waves up to $\lambda = 2400 \text{ nm}$ with increasing dose.

Keywords: film; polyetheretherketone; implantation; ion; nickel; transmission; reflection.

Введение

Имплантация низкоэнергетичных ионов металлов в полимерные пленки вследствие формирования на длине пробега ионов углеродных и металлических включений позволяет получать слои металло-полимерного композита с разными механизмами электронного транспорта и разным

магнитным состоянием. Такие наноструктурированные композиционные слои, полученные имплантацией ионов магнитных металлов, могут использоваться в магнитооптических устройствах с широким спектром применений вследствие формирования многослойной структуры с разными показателями преломления [1].

В данной работе представлены результаты измерения спектральных зависимостей пропускания и отражения пленок полиэфирэфиркетона (ПЭЭК), имплантированных ионами никеля.

Методика эксперимента

Пленки ПЭЭК ($C_{19}H_{12}O_{3}$)_п толщиной 25 мкм имплантировались при комнатной температуре однозарядными ионами никеля Ni^{+} с энергией 40 кэВ в интервале доз 2.5×10^{16} - 1.5×10^{17} см⁻² при плотности ионного тока 4 мкА/см² ионно-лучевым ускорителем ИЛУ-3

Спектры пропускания и отражения измерялись при комнатной температуре в диапазоне длин волн 200-3000 нм однолучевым спектрофотометром PHOTON-RT. Спектральные зависимости коэффициентов пропускания изучались при нормальном падении света, а отражения - при угле падения 8°. Спектральное разрешение было не хуже 0.5 нм, а погрешность измерения амплитуды не превышала ±0.5%.

Результаты и их обсуждение

На рис. 1 показаны спектральные зависимости пропускания исходной и имплантированных пленок. Резкий край пропускания, обусловленный отсутствием поглощения света из-за возбуждения π -электронной системы полимера, наблюдается при $\lambda = 354$ нм. В исходной пленке (кривая 1) в области прозрачности величина коэффициента пропускания близка к 80%, и он слабо зависит от длины волны.

Дозовая зависимость интегрального коэффициента пропускания показана на рис. 2. Имплантация приводит к уменьшению интегрального коэффициента пропускания в восемь раз, что обусловлено формированием в приповерхностном слое аморфных и графитоподобных углеродных включений, увеличением концентрации никеля и формированием его включений и включений его оксидов.

На рис. 3 (а) и (б) показаны спектральные зависимости отражения.

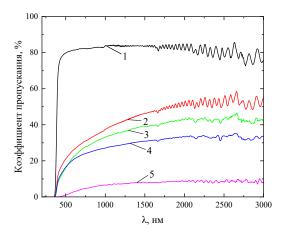


Рис. 1. Спектральная зависимость пропускания исходной (1) и имплантированных ионами никеля (2 - 5) пленок полиэфирэфиркетона. D, см⁻²: 2 - 2.5·10¹⁶; 3 - 1·10¹⁷; 4 - 1.25·10¹⁷; 5 - 1.5·10¹⁷.

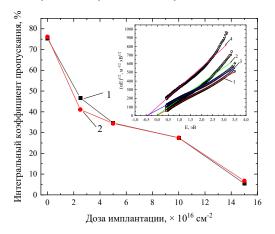
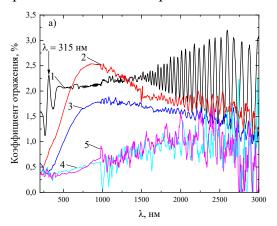



Рис. 2. Зависимость интегрального коэффициента пропускания пленок ПЭЭК от дозы имплантации

Имплантация приводит к изменению как величины, так и спектральной зависимости коэффициента отражения обоих сторон.

В исходной пленке наблюдается узкая полоса при $\lambda=315$ нм и резкое увеличение отражения при $\lambda=354$ нм, из-за дополнительного вклада в отражение не имплантированной стороны вследствие прозрачности пленки. Характерная для исходного образца полоса при $\lambda=315$ нм в отражении имплантированной стороной не наблюдается при первых двух дозах, а при больших дозах она проявляется с интенсивностью в пять раз меньше. При этом ее положение смещается в область коротких длин волн на $\Delta\lambda=20$ нм, а с не имплантированной стороной в область длинных волн на $\Delta\lambda=55$

нм. Таким образом, комформационная перестройка надмолекулярной структуры полимера при имплантации может проходить в противоположных направлениях.

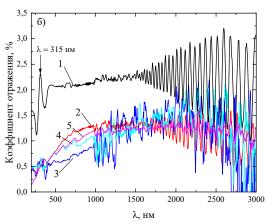


Рис. 3. Спектральная зависимость отражения исходной (1) и имплантированных (2-5) пленок ПЭЭК при падении света на имплантированную (а) и не имплантированную (б) стороны. D, см⁻²: $2-2.5\cdot10^{16}$; $3-1\cdot10^{17}$; $4-1.25\cdot10^{17}$; $5-1.5\cdot10^{17}$

Отметим также появление широкой полосы с максимумом при $\lambda \approx 820$ нм, обусловленной формированием включений никеля [2]. С увеличением дозы она уширяется и смещается в сторону длинных волн. Сдвиг отражения в длинноволновую область может быть связан с неравномерным распределением размера формирующихся углерод- и никельсодержащих включений по толщине модифицированного слоя [3, 4].

Зависимость интегрального коэффициента отражения от дозы имплантации показана на рис. 4.

Рис. 4. Дозовая зависимость интегрального коэффициента отражения имплантированных пленок ПЭЭК при падении света на имплантированную (1) и не имплантированную (2) стороны

Немонотонная зависимость коэффициента отражения от дозы имплантации подтверждает завершение процессов карбонизации приповерхностного слоя при первой дозе и определяющее влияние никельсодержащей компоненты на оптические характеристики модифицированного слоя. Так представление спектральной зависимости пропускания в координатах Тауца (вставка на рис. 2) показало, что оптическая щель имеет отрицательный знак.

Заключение

Интегральный коэффициент пропускания пленок ПЭЭК при имплантации ионов никеля уменьшается в восемь раз. Характерная для исходной пленки узкая полоса отражения при $\lambda = 315$ нм в имплантированных пленках наблюдается как от не имплантированной, так и имплантированной сторон. В отражении имплантированной стороной она смещается на $\Delta \lambda = 20$ нм в сторону коротких волн, а не имплантированной стороной на $\Delta\lambda = 55$ нм в сторону длинных волн. Обнаружена широкая полоса отражения при $\lambda = 820$ нм, смещающаяся до $\lambda = 2400$ нм, обусловленная формированием включений никеля и неравномерным распределением его размеров по толщине модифицированного слоя.

Библиографические источники

- 1. Бумай Ю.А., Долгих Н.И., Харченко А.А., Валеев В.Ф., Нуждин В.И., Хайбуллин Р.И. и др. Оптические характеристики композита, полученного имплантацией ионов серебра в полиэтилентерефталат. Журнал прикладной спектроскопии 2012; 79(5): 781-787.
- 2. Refractive Index Info. Доступно по: https://refractiveindex.info/ (дата обращения: 27.05.2025).
- 3. Townsend P.D., Chandler P.J., Zhang L. Optical effects of ion implantation. Cambridge: Cambridge University Press; 1994.
- 4. Stepanov A. L, Hole F.E., Townsend P.F. Reflectance of the dielectric layers containing formed by ion implantation. *Journal of Non-Crystalline Solids* 1999; 244: 275-279.