МОДИФИКАЦИЯ КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЫ ТИТАНА ЛАЗЕРНЫМ ИЗЛУЧЕНИЕМ

С.В. Васильев, А.Л. Ситкевич

Гродненский государственный университет им. Янки Купалы, ул. Ожешко 22, Гродно 230023, Беларусь s.vasilijev@grsu.by, rotkevich al@grsu.by

Среди различных способов изменения твердости материалов широко и эффективно используется их лазерная обработка. При этом наблюдается четко выраженное изменение физических свойств облученных образцов. При этом не наблюдается ни изменение состава вещества, ни каких-либо выраженных фазовых переходов. В работе методом рентгеновской дифрактометрии обнаружено изменение кристаллической структуры титана в зоне воздействия на их поверхность лазерного излучения с плотностью потока 10^4 - 10^5 Вт/см². Показано, что при действии лазерного излучения на поверхность титана его кристаллическая структура меняется в облученной зоне с равновесной на искаженную (имеющую форму параллелепипеда, отличную от куба). Сделано предположение о связи обнаруженного эффекта с особенностями температурного нагрева поверхности металла.

Ключевые слова: лазерное излучение; рентгеновская дифрактометрия; изменение кристаллической структуры; анизотропность теплового расширения металла.

MODIFICATION OF THE CRYSTAL STRUCTURE OF TITANIUM BY LASER RADIATION

Sergey Vasilijev, Anastasiya Sitkevich Yanka Kupala State University of Grodno, 22 Ozheshko Str., 230023 Grodno, Belarus, s.vasilijev@grsu.by, rotkevich al@grsu.by

Laser radiation is a high-energy and intense source of light that can expose materials to various types of effects. In recent years, interest in studying the influence of laser radiation on the structural changes of irradiated samples has significantly increased, as it can create new opportunities for the development and improvement of various industrial and scientific processes.

Among the various methods for altering the hardness of materials, laser processing is widely and effectively used. This results in a pronounced change in the physical properties of the irradiated samples, without any observable changes in the composition of the substance or any distinct phase transitions.

It should be noted that the mechanisms of the impact of laser radiation are not yet sufficiently studied. To uncover the physical essence of these mechanisms, it is necessary to develop models that can describe the diverse processes.

In this study, X-ray diffractometry revealed changes in the crystalline structure of titanium in the area affected by laser radiation with a power density of $10^4 - 10^5$ W/cm². It was shown that when laser radiation acts on the surface of titanium, its crystalline structure changes in the irradiated zone from equilibrium to distorted (taking on a shape of a parallelepiped, different from a cube). A hypothesis was made regarding the connection of the observed effect with the characteristics of the thermal heating of the metal surface.

Keywords: laser radiation; X-ray diffractometry; change in crystalline structure; anisotropy of thermal expansion of metal.

Введение

Лазерное излучение является высокоэнергетическим и интенсивным источником света, который может подвергать материалы различного типа воздействию. В последние годы интерес к исследованию воздействия лазерного излучения на структуры материалов значительно возрос, так как это может создать новые возможности для разработки и улучшения различных промышленных и научных процессов. Лазеры успешно используются во многих отраслях народного хозяйства, во многих областях науки, в военном де-

ле, в медицине, в космических программах и т.д. Причиной этого являются уникальные характеристики лазерного излучения: его монохроматичность, когерентность; возможность концентрировать излучаемую энергию в малой области пространства (порядка длины волны излучения) за очень малое время (10^{-16} c) при больших значениях плотности потока мощности излучения (до 10^{10} BT/cм²).

Указанные выше особенности излучения находят широкое применение при обработке различных материалов.

Следует, однако, отметить, что механизмы указанного воздействия лазерного излучения еще недостаточно изучены. Для раскрытия физической сущности этих механизмов необходимо построение моделей, позволяющих описывать разнообразные процессы,

Результаты и их обсуждение

В качестве источника воздействия на образцы титана (Ті) применялось излучение лазера ГОР-100М с длиной волны излучения $\lambda=0,69$ мкм. Лазер работал в режиме свободной генерации, что дало возможность получать импульсы с длиной $\tau\approx1,2$ мс, а также варьировать энергию Е в пределах от 5 до 50 Дж. На рис. 1 приведена форма лазерного импульса, воздействующего на образец.

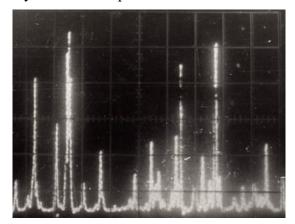


Рис. 1. Форма лазерного импульса (цена деления по оси ординат $-50~\mathrm{kBt}$). Скорость развертки 5 мкс/дел

Использовались именно такие повторяющиеся лазерные импульсы, поскольку

они давали наиболее ярко выраженное изменение структуры облученного образпа.

Для определения структурных изменений образцов из титана (сплошные поликристаллические), до и после воздействия лазерного излучения, применялся рентгеновский дифрактометр ДРОН-2.0. В дифрактометре использовалось излучение линии К α от трубки с медным антикатодом $\lambda_{K\alpha 1} = 1.54051 \text{Å}$, $\lambda_{K\alpha 2} = 1.54433 \text{Å}$.

Результаты расчетов представлены на рис. 2. Вертикальные линии соответствуют теоретически рассчитанным значениям и, полученным на основе структуры титана

Видно, что при воздействии на титановый образец излучения рубинового лазера с $q \sim 5 \cdot 10^4 \; \mathrm{BT/cm^2}$ форма функции меняется. Это свидетельствует об изменении концентрации дефектов кристаллической решетки в обработанной лазерным излучением зоне.

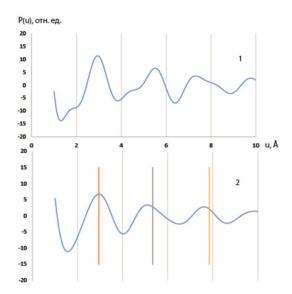


Рис. 2. Корреляционные функции P(u) для титановых образцов. 1- до облучения, 2- после лазерного облучения

Оценивая высоту первого экстремума корреляционных функций до и после облучения, получено, что трансформации подвержено около 60% ячеек.

Используя уравнение теплопроводности, был построен график изменения тем-

ператур в процессах нагревания и охлаждения титановой пластины.

Следует учесть, что нагревание образцов происходит только в момент воздействия лазерного излучения, во все другие времена идет процесс охлаждения (остывания). Предполагается, что пички лазерного излучения длительностью $\tau \sim 1$ мкс, нагревающие образец, подаются с интервалом t=10 мкс, за это время область пятна фокусировки лазера остывает на рассчитанные, по методике [1-3], значения.

Исходная температура пластины $T_0 = 300 \mathrm{K}$. В течение 1 мкс она подвергается лазерному воздействию, в результате чего происходит ее нагрев до температуры T_1 .

Затем следует 10 мкс перерыв в работе лазера, в течение которого происходит остывание платины от температуры T_1 до температуры T_2 . T_2 определяется по формуле.

После этого снова происходит нагрев (от T₂ до T₃) и очередное охлаждение (T₃ до T₄) и т.д. При этом следует учитывать зависимость некоторых параметров от температуры при очередном расчете новой температуры.

Из проведенных расчетов видно, что после 17 пичка (примерно через 177 мкс) дальнейший нагрев пластины не происходит и достигается максимальная температура в 680,20 К. Эта температура ниже температуры плавления (1941 К) и температуры полного преобразования кристаллической структуры из гексагональной плотноупакованной (ГПУ) структуры α—Ті в объемно-центрированную кубиче-

скую (ОЦК) структуру β —Ті. (1155 К). Соответственно, трансформации кристаллической структуры в объемноцентрированную кубическую (ОЦК) структуру β —Ті не происходит. Максимальная температура нагрева составляет 58,8% от температуры полной трансформации кристаллической ячейки.

Заключение

Проведенные исследования показали, что при воздействии лазерного излучения на поверхность Ті его кристаллическая структура меняется в облученной зоне. Обнаруженный эффект может быть связан с анизотропностью теплового расширения металла.

Предложенная модель может быть использована для качественного описания нагревания рассмотренного материала, по крайней мере в случае небольшого числа воздействующих на образец импульсов лазерного излучения, хоть и не учитывает некоторые процессы, такие как затраты энергии на фазовые переходы, а также другие процессы, протекающие не только в облучаемых материалах, но и непосредственно вблизи их поверхности.

Библиографические ссылки

- 1. Егоров, В.И. Точные методы решения задач теплопроводности. Учебное пособие. СПб: Университет ИТМО; 2015. 60 с.
- 2. Бухмиров, В.В., Ракутина, Д.В., Солнышкова Ю.С. Нестационарная теплопроводность: Справочные материалы для решения задач. Иваново: УИУНЛ ФГБОУ ВПО ИГЭУ; 2013. 36 с.
- 3. Исаев, С.Н., Кожинов, И.А., Кофанов, В.И. Теория тепломассобмена. Москва: Высшая школа; 1997. 683 с.