ПОЛУЧЕНИЕ УЛЬТРАТОНКИХ КОНТАКТОВ НА ПОВЕРХНОСТИ ПОЛУПРОВОДНИКОВ

Д.А. Ташмухамедова, А.А. Абдуваитов, М.Б. Юсупжанова, Х.Х. Болтаев, Б.Е. Умирзаков Ташкентский государственний технический университет им. Ислама Каримова, Ташкент 100095, Узбекистан, ftmet@mail.ru

Впервые с использованием метода низкоэнергетической ионной бомбардировки на поверхности CdS получены ультратонкие омические контакты. Изучены профили распределения атомов контактирующего металла (никеля) по глубине чистого CdS и CdS, бомбардированного ионами Ba⁺ и Ar⁺. Показано, что ионная бомбардировка приводит к уменьшению при контактного (переходного) слоя в два и более раза и составляет ~ 100-120 Å. При этом удельное сопротивление ρ этого слоя не превышало 2-2.5 мкОм·см. Уменьшение толщины переходного слоя и ρ объясняется образованием при ионной бомбардировке на поверхности CdS тонкого (30-40 Å) металлического слоя.

Ключевые слова: омический контакт; ионная бомбардировка; удельное сопротивление; профиль распределения.

OBTAINING ULTRATHIN CONTACTS ON THE SURFACE OF SEMICONDUCTORS

Dilnoza Tashmukhamedova, Akbar Abduvayitov, Mahsuna Yusupjanova, Khurshid Boltaev, Baltohodja Umirzakov

Tashkent State Technical University named after Islam Karimov,

100095 Tashkent, Uzbekistan, ftmet@mail.ru

For the first time, ultrathin ohmic contacts have been obtained on the surface of CdS using the method of low-energy ion bombardment. The distribution profiles of atoms of the contacting metal (nickel) over the depth of pure CdS and CdS bombarded with Ba⁺ and Ar⁺ ions have been studied. It is shown that ion bombardment leads to a decrease in the near-contact (transition) layer by a factor of two or more and is ~ 100-120 Å. At the same time, the resistivity ρ of this layer did not exceed 2-2.5 $\mu\Omega$ -cm. The decrease in the thickness of the transition layer and ρ is explained by the formation of a thin (30-40 Å) metal layer on the CdS surface during ion bombardment.

Keywords: ohmic contact; ion bombardment; resistivity; distribution profile.

Введение

Монокристаллические образцы и плёнки A^2B^6 , в особенности CdS и многослойные гетероструктуры на их основе, широко используются в создании различных приборов микро-, нано- и оптоэлектроники, в том числе солнечной энергетики [1-4]. В настоящее время хорошо изучено влияние термообработки, лазерного отжига, СВЧ-обработок, ионной и электронной бомбардировки, на структуру, состав и оптические свойства образцов A^2B^6 , а также процессы взаимодиффузии атомов на границе раздела многослойных ПДП и МДП-систем, созданных на основе этих полупроводников [5–14]. В частности, в работах [11, 12] имплантацией ионов Ва+ в CdTe и CdS на их поверхности и вблизи неё получены нанокристаллы и слои типа $Cd_{1-x}Ba_xTe$ и $Cd_{1-x}Ba_xS$.

Основной проблемой при создании электронных приборов на основе нанопленочных ПДП и МДП структур является создание надежных ультратонких контактов. Основные требования к омическим контактам: удельное сопротивление $\rho_{\rm K}$ омического контакта должно быть $\leq 10^{-2}$ Ом·см; малая толщина переходного слоя металл - кремний; морфологическое совершенство пленки и неизменность фазового состава на всей площади контакта; стабильность свойств контактов в процессе изготовления и эксплуатации.

Каждый из этих методов обладая определенными преимуществами не лишены и недостатков. Кроме того, эти методы использованы в основном для нанопленок кремния.

В данной работе мы попытались получить тонкий омический контакт на поверхности CdS, методом ионной бомбардировки.

Методика эксперимента

Объектами исследования являлись монокристаллические пленки CdS (111) nтипа с толщиной ~ 1 мкм, выращенные на поверхности диэлектриков (силикатных стекол), методом термического испарения в вакууме $\sim 10^{-6}$ мм рт.ст. [15]. Эти образцы установлены на универсальную сверхвысоковакуумную ($P = 10^{-9}$ мм рт.ст.) установку, где проводились все технологические операции (прогрев, напыление атомов Ni, ионная бомбардировка и исследования состава и структуры исследуемых образцов). Для получения сверхтонких контактов на поверхности пленок CdS использовался метод низкоэнергетической ионной бомбардировки. Исследования проводились с использованием методов оже-электронной спектроскопии (ОЭС), ультрафиолетовой фотоэлектронной спектроскопии (УФЭС).

Результаты и их обсуждение

Омический контакт характеризуется удельным сопротивлением, значение которого определяется через полное сопротивление. В контактах металл-полупроводник с низким уровнем легирования $N_D \leq 10^{17}$ см⁻³ преобладает термо-электронная компонента, а высоким уровнем легирования $N_D \geq 10^{19}$ см⁻³ – туннельная компонента тока.

Для получения омического контакта нами использовались два метода: в первом случае пленки CdS предварительно имплантировались ионами Ba^+ с дозой насыщения, а во втором случае бомбардировались ионами Ar^+ с дозой $D\approx 2\cdot 10^{17}$ см⁻². При имплантации ионов Ba^+ в CdS с

 $E_0=1$ кэB высокой дозой ($Dpprox D_{ ext{ iny H}}pprox 8\cdot 10^{16}$ см-2) поверхностные слои с толщиной 40-50 Å обогащались атомами Cd+Me, т.е. происходила металлизация поверхности. После напыления на поверхность ионноимплантированного образца Ni получили надежный омический контакт. Толщина поверхностного слоя (глубина проникновения Ni) не превышала 50-70 Å (рис. 1). Однако после прогрева ионноимплантированного CdS до T ≈ 900 K на поверхности образовалась монокристаллическая пленка Cd_{0.6}Ba_{0.4}S (рис. 1). рс этой системы была высокая и составляла ≥ 100 Ом см и после напыления № образовался переходной слой с толщиной ~ 400-500 Å, т.е. этот метод не дал необходимого эффекта.

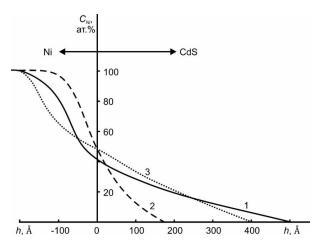


Рис. 1. Профили распределения Ni по глубине h: 1 – CdS (111); 2 – CdS, имплантированный ионами Ba^+ с $E_0=1$ кэB, 3 – после прогрева при $T=800~{\rm K}$ ионно-имплантированного CdS в течении 30 мин. Толщина пленки Ni составляла $\sim 500~{\rm \AA}$

Во втором случае мы использовали метод бомбардировки CdS ионами Ar^+ . Наиболее оптимальным был следующий режим: угол падения ионов Ar^+ на поверхность $\sim 40\text{-}45^\circ$, энергия ионов $E_0=3$ кэВ, доза ионов $D=2\cdot10^{17}$ см $^{-2}$. После бомбардировки поверхность с толщиной 40-50 Å покрывалась атомами Cd (80-90 ат.%). После прогрева при T=800 К происходила полная кристаллизация разупорядоченных слоев CdS, а поверхностная концентрация Cd составляла $\sim 70\text{-}75$ ат.%, а S=25-30 ат.% (рис. 2). Удельное

сопротивление этих слоев было $\sim 10^{-3}$ Ом·см.

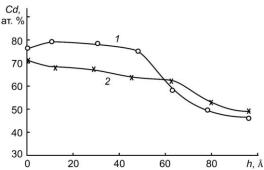


Рис. 2. Зависимость концентрации Cd от глубины для пленки CdS, бомбардированного ионами Ar^+ с E_0 =3 кэB при D= $2\cdot10^{17}$ см $^{-2}$ под углом к поверхности α =40-45°. 1 — после ионной бомбардировки; 2 — после прогрева при T=800 K в течение t=40 мин

Наличие большого количество Cd обеспечивало хорошую адгезию Ni и формированию хорошего омического контакта с малой толщиной переходного слоя (80-70 Å).

Заключение

Таким образом, предварительная бомбардировка CdS ионами Ar^+ позволяет получить ультратонкие контакты на его поверхности.

Библиографические ссылки

- 1. Хрипунов Г.С., Копач В.Р., Мериуц А.В., Кириченко Р.В., Дейнеко Н.В. *ФТП* 2011; 45(1): 1564.
- 2. Murali K.R., Matheline M., John R., *Chalcogenide Lett* 2009; 6(9): 483.

- 3. Vashchenko A.A., Lebedev V.S., Vitukhnovskii A.G., Vasiliev R.B., Samatov I.G. *JETP Lett* 2012; 96: 113.
- 4. Dang C., Lee J., Breen C., Steckel J.S., Coe-Sullivan S., Nurmikko A. *Nature Nanotechnology* 2012; (7): 335.
- 5. Беляев А.П., Рубец В.П., Антипов В.В. *ФТП* 2005; 39(2): 204-206.
- 6. Мирсагатов Ш.А., Сапаев И.Б. *ФТП* 2014; 48(10): 1398-1404.
- 7. Свит К.А., Протасов Д.Ю., Свешникова Л.Л., Шестаков А.К., Тийс С.А., Журавлев К.С. *ФТП* 2014; 48(9): 1237-1241.
- 8. Редько Р.А., Будзуляк С.И., Корбутяк Д.В., Лоцько А.П., Вахняк Н.Д., Демчина Л.А., Калитчук С.М., Конаеова Р.В., Миленин В.В., Быков Ю.В., Егоров С.В., Еремеева А.Г. *ФТП* 2015; 49(7): 916-919.
- 9. Роках А.Г., Шишкин М.И., Аткин В.С. *ФТП* 2018; 52(8): 853-859.
- 10. Седракян Д.М., Петросян П.Г., Григорян Л.Н. $\mathcal{K}T\Phi$ 2015; 85(5): 94-99.
- 11. Умирзаков Б.Е., Содикжанов Ж.Ш., Ташмухамедова Д.А., Абдувайитов А.А., Раббимов Э.А. *Письма в ЖТФ* 2021; 47(12): 3-5.
- 12. Умирзаков Б.Е., Ташмухамедова Д.А., Раббимов Э.А., Содикжанов Ж.Ш., Уроков А.Н., *Поверхность*. *Рентгеновские, синхротронные и нейтронные исследования* 2019; (12): 76-80.
- 13. Abduvayitov A.A., Boltaev Kh.Kh., Rozikov G.A. *Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques* 2022; 16(5): 860-863.
- 14. Ташмухамедова Д.А., Умирзаков Б.Е., Мирджалилова М.А. *Изв. АН. Сер. Физ.* 2004; 68(3): 424-426.
- 15. Boltaev Kh.Kh., Tashmukhamedova D.A., Umirzakov B.E. *Journal of Surface Investigation* 2014; 8(2): 326-331.