ВЛИЯНИЕ МАГНИТНО-ИМПУЛЬСНОЙ ОБРАБОТКИ СТАЛИ 50ХГФА С Cr-ПОКРЫТИЕМ НА ИХ СТРУКТУРУ И СВОЙСТВА

А.М. Милюкова¹⁾, В.В. Чаевский²⁾, В.В. Жилинский³⁾

¹⁾Физико-технический институт НАН Беларуси,
ул. Академика Купревича 10, Минск 220084, Беларусь, milykova@phti.by

²⁾Белорусский государственный университет информатики и радиоэлектроники,
ул. Гикало 9, Минск 220013, Беларусь, v.chaevskij@bsuir.by

³⁾Белорусский государственный технологический университет,
ул. Свердлова 13а, Минск 220006, Беларусь, zhilinski@yandex.ru

В этой работе представлены результаты экспериментальных исследований по магнитно-импульсной обработке (МИО) образцов сталей 50ХГФА и 8Х6НФТ без покрытий и с гальваническими покрытиями. Были исследованы сталь 50ХГФА с Ст-покрытием в сравнении с сталью 8Х6НФТ с Fe-покрытием. Микроструктура сталей и Ст-покрытия была проанализирована с помощью сканирующей электронной микроскопии. Влияние параметров МИО на изменение свойств стали и покрытия было оценено измерениями макронапряжений и электросопротивления поверхности, прочности на растяжение, удлинения, твердости и разрушения. Была обсуждена связь между микроструктурой и механическими свойствами системы сталь-покрытие.

Ключевые слова: магнитно-импульсная обработка; покрытие; сталь; хром; макронапряжения; электросопротивление.

THE EFFECT OF MAGNETIC PULSE PROCESSING OF 51CrV4 STEEL WITH Cr-COATING ON ITS STRUCTURE AND PROPERTIES

A.M. Miliukova¹⁾, V.V. Chayeuski²⁾, V.V. Zhylinski³⁾

¹⁾Physical-Technical Institute of the National Academy of Sciences of Belarus Minsk, 10 Academician Kuprevich Str, 220084 Minsk, Belarus, milykova@phti.by

²⁾Belarusian State University of Informatics and Radioelectronics, 9 Gikalo Str., 220013 Minsk, Belarus, v.chaevskij@bsuir.by

³⁾Belarusian State Technology University, 13a Sverdlova Str., 220006 Minsk, Belarus, zhilinski@yandex.ru

This paper presents the results of experimental studies on magnetic pulse processing (MPP) of a 51CrV4 and D2 steel samples without coatings and with galvanic coatings. The Cr coating onto 51CrV4 steel was compared with the Fe coating deposition on the D2 steel. The microstructure of the steels and the Cr coating was analyzed using scanning electron microscopy. The influence of the MPP parameters on the change in the properties of the steel and coating was estimated by measurements of the macrostresses and surface electrical resistance, tensile strength, elongation, hardness and fracture. The relationship between the microstructure and mechanical properties of the steel-coating system was discussed. It was found that after MPP of a 51CrV4 steel sample with the Cr coating, the coating becomes compacted at a depth of $\sim 15~\mu m$.

Keywords: magnetic pulse processing; coating; steel; chrome; macrostress; electrical resistance.

Введение

Сталь 50ХГФА (аналог 51CrV4) обладает высокой прочностью и усталостными характеристиками благодаря добавлению Cr и V, что широко используется в крупно-

габаритных демпфирующих пружинах транспортных средств [1]. Исследования [2] показывают, что для повышения прочности при сохранении хорошей пластичности этих сталей необходимо улучшение их мик-

роструктуры. Для изготовления строгальных ножей, предназначенных для обработки древесины, в основном используется инструментальная сталь 8X6HФТ (аналог D2, 8Cr13MoV и др.) [3]. Одним из перспективных направлений восстановления ножевого инструмента является нанесение гальванических покрытий Fe и Cr [4, 5].

Целью данной работы было изучение влияния магнитно-импульсной обработки (МИО) на микроструктуру, твердость и электросопротивление поверхности образцов из стали марки 50ХГФА с гальваническим Ст-покрытием в сравнении с образцами из стали 8Х6НФТ с гальваническим Fe-покрытием.

Методика эксперимента

Электролитическое осаждение железа на поверхность образца из стали $8X6H\Phi T$ проводили из сульфатного электролита железнения при температуре 30– $40\,^{\circ}C$ и плотностях тока 10–20 А/дм². Ст-покрытие на поверхность образца из стали $50X\Gamma\Phi A$ было осаждено из электролита ($CrO_3 - 250\, \text{г/дм}^3$); $H_2SO_4 - 2,5\, \text{г/дм}^3$) при плотности тока $50\,\text{А/дм}^2$ при температуре 50– $60\,^{\circ}C$. Толщина сформированных покрытий составила $13-15\,$ мкм. Образцы были обработаны на установке МИУ-3 (Φ TИ НАН Беларуси) при технологическом режиме $5\,$ импульсов при энергии воздействия $8\,$ кДж.

Изучение структурно-фазового состояния и макронапряжений II рода образцов проводились на рентгеновском дифрактометре GNR EXPLORER в Си-Кα излучении. Микроструктура сталей и Сг-покрытия была проанализирована с помощью сканирующей электронной микроскопии (СЭМ) с использованием микроскопа Нітасні S-4800. Измерения твердости проводились по Бринеллю (НВ) и Роквеллу (НRС) на универсальном твердомере AFFRI-URBV-VRS (нагрузка 750 кгс, диаметр шарика 5 мм). Электросопротивление покрытий измерялось на электроизмери-

тельном комплексе в лаборатории магнитно-импульсных технологий ФТИ по методике измерений №ФТИ 0.388 [6] до и после МИО, который основан на пропускании через образец тока высокой частоты (ТВЧ) и измерением падения напряжения на скин-слое [7]. Поскольку при МИО происходит воздействие на поверхность, то анализ результатов скин-эффекта позволяет говорить о качестве МИО и степени изменения поверхностного слоя (однородность и степень дисперсности структуры, искажений кристаллической решетки) на определенной глубине, которая зависит от частоты ТВЧ.

Результаты и их обсуждение

Рисунок 1 показывает, что сталь 50ХГФА содержит фазы α -Fe и Fe₃C.

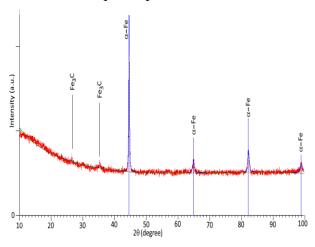
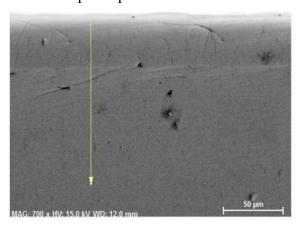



Рис. 1. Дифрактограмма образцов стали 50ХГФА

Сформированное на стали Ст-покрытие однородно, равномерно распределено по поверхности (рис. 2а) и не перемешивается с основой (рис. 2б), что характерно для всех типов покрытий [4].

Анализ результатов измерения макронапряжений II рода показывает, что на поверхности образцов стали в исходном состоянии макронапряжения были сжимающие (-1.147 ГПа для 50ХГФА и -1.594 ГПа для 8Х6НФТ). Fe-покрытия привели к росту макронапряжений в сторону растягивающих (0.637 ГПа), которые после МИО

стали сжимающими (-0.212 ГПа). Сжимающие остаточные напряжения способствуют повышению усталостной прочности, т. к. суммируясь с напряжениями от внешней нагрузки, они уменьшают результирующие растягивающие напряжения в поверхностном слое детали и препятствуют зарождению усталостных трещин. Ст-покрытия стального образца не влияло на его макронапряжения.

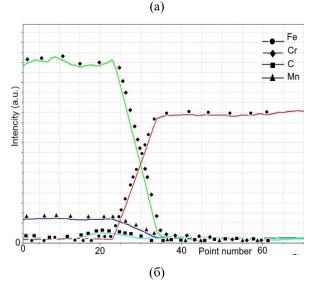


Рис. 2. Структура Ст-покрытия на стали 50ХГФА: а – СЭМ-снимок скола образца; б – распределение элементов вдоль линии сканирования

Твердость Сг-покрытия на стали 50ХГФА (250-280 HB) была больше основы (260-266 HB) и практически не изменялась после МИО (255-285 HB). Значения твердости Fe-покрытия на стали 8Х6НФТ (53-54 HRC), твердости основы (52-53 HRC) и после МИО (53-54 HRC)

совпадали и не изменялись.

Изменения электросопротивления в скин-слое Ст-покрытия не наблюдаются (рис. 3), что можно объяснить свойствами самого хрома.

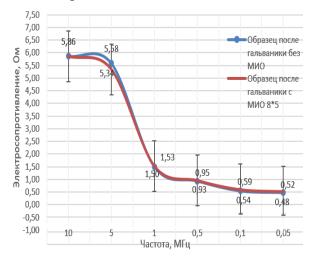


Рис. 3. Электросопротивление в скин-слое на образцах стали $50 \text{X} \Gamma \Phi \text{A}$ с Cr-покрытием до и после МИО

На глубине ~15 мкм (толщина покрытия) после МИО наблюдается уменьшение электросопротивления Ст-покрытия, что говорит об уплотнении покрытия.

Заключение

МИО образца стали 50ХГФА с Сг-покрытием не влияло на его макронапряжения II рода, в то время как Fе-покрытия привели к росту макронапряжений в сторону растягивающих (0.637 ГПа), которые после МИО стали сжимающими (-0.212 ГПа). Твердость Сг-покрытия на стали 50ХГФА значительно превосходит твердость Fe-покрытия на стали 8Х6НФТ. После МИО образца стали 50ХГФА с Сг-покрытием на глубине ~15 мкм происходило уплотнение покрытия.

Библиографические ссылки

- 1. Wang Z., Liu X., Xie F., Lai C., Li H., Zhang Q. Dynamic recrystallization behavior and critical strain of 51CrV4 high-strength spring steel during hot deformation. *JOM* 2018; 70: 2385-2391.
- Lin Zhang, Dehai Gong, Yunchao Li, Xiaojun Wang, Xixi Ren, Engang Wang. Effect of Quenching Con-

- ditions on the Microstructure and Mechanical Properties of 51CrV4 Spring Steel. *Metals* 2018, 8(12), 1056.
- 3. AISI D2 Cold Work Tool Steel Application Analysis. https://www.fushunspecialsteel.com/aisi-d2-cold-work-tool-steel-application-analysis/ (Дата обращения: 07.06.2025).
- 4. Chayeuski V., Taleb A., Zhylinski V., Kuleshov A., Shtempliuk R. Preparation and characterization of the Crnanodiamonds/MoN coatings with performant mechanical properties. *Coatings* 2022; 12(7), P. 1012.
- 5. Жилинский В.В., Остапук О.О., Яскельчик В.В., Чаевский В.В., Милюкова А.М. Формирование и
- физико-механических свойства гальванических покрытий Fe-УДА для дереворежущего инструмента. В кн.: Войтов И. В., ред. Материалы Междунар. науч.-техн. конф. «Современные технологии электрохимические оборудование» (19-23 мая 2025 г.), г. Минск, Минск: БГТУ; 2025. С. 36-38.
- 6. Методика измерений физических параметров в поверхностном слое металлических образцов, обработанных магнитно-импульсным воздействием №ФТИ 0.388. Минск: ФТИ НАН Беларуси; 2018. 12 с.
- 7. Патент ВУ23060 С1, 30.06.2020.