ИЗУЧЕНИЕ РАДИАЦИОННОЙ СЕГРЕГАЦИИ ЭКВИАТОМНЫХ СПЛАВОВ НА ОСНОВЕ ВАНАДИЯ ПРИ ОБЛУЧЕНИИ ИОНАМИ КРИПТОНА С ЭНЕРГИЕЙ 147 МЭВ

И.А. Иванов^{1), 2)}, Б.С. Аманжулов^{1), 2)}, В.В. Углов³⁾, С.В. Злоцкий³⁾, Ке Джин⁴⁾, А.Е. Рыскұлов¹⁾, А.Е. Курахмедов¹⁾, Е.В. Бихерт¹⁾, Д.А. Мустафин¹⁾

¹⁾Институт ядерной физики, ул. Ибрагимова 1, Алматы 050032, Казахстан, i.ivanov@inp.kz, b.amanzhulov@inp.kz, ryskulov_nbd@mail.ru, a.kurahmedov@inp.kz, e.bikhert@inp.kz, d.mustafin@inp.kz

²⁾Евразийский национальный университет им. Л.Н. Гумилева, ул. Сатпаева 2, Астана 010008, Казахстан

³⁾Белорусский государственный университет, пр. Независимости 4, Минск 220030, Беларусь, uglov@bsu.by, zlotski@bsu.by

⁴⁾Пекинский технологический институт, ул. Южная 5, Чжунгуаньцунь, район Хайдянь, 100081 Пекин, Китай, jinke@bit.edu.cn

В работе изучались изменения морфологии и элементного состава эквиатомных сплавов на основе ванадия после облучения ионами 84 Kr $^{15+}$ с энергией 147 МэВ и флюенсом ионов 1×10^{13} - 1×10^{15} см $^{-2}$ при комнатной температуре и при 700°С. На поверхности облученных V, VNb, VNbТа, и высокоэнтропийного сплава (ВЭС) VNbТaTi не выявлено крупных дефектов, за исключением сколов. Согласно результатам анализа, методом энергодисперсионной спектроскопии (РЭМ-ЭДС) в VNbTa и VNbTaTi сегрегация элементов, особенно Та, усиливается с увеличением флюенса. В VNb сегрегация достигает максимума при флюенсе 1×10^{14} см $^{-2}$, а затем уменьшается. При облучении VNbTaTi при 700°С преобладает сегрегация титана. Также с помощью анализа методом Резерфордовского Обратного Рассеяния (РОР) обнаружено увеличение концентраций Та с глубиной в образцах, облученых ионами криптона с флюенсом 1×10^{13} см $^{-2}$. Сплавы VNbTa и VNbTaTi проявляют подверженность радиационной сегрегации, однако уровень сегрегации находится в пределах, характерных для аналогичных ВЭС, исследованных в других работах.

Ключевые слова: ионное облучение; высокоэнтропийные сплавы; радиационная сегрегация; элементный анализ; ЭДС; Резерфордовское обратное рассеяние.

STUDY OF RADIATION-INDUCED SEGREGATION OF VANADIUM-BASED EQUIATOMIC ALLOYS UNDER IRRADIATION WITH 147 MeV KRYPTON IONS

I.A. Ivanov^{1), 2)}, B.S. Amanzhulov^{1), 2)}, V.V. Uglov³⁾, S.V. Zlotsky³⁾, K. Jin⁴⁾, A.E. Ryskulov¹⁾, A.Y. Kurakhmedov¹⁾, Y.V. Bikhert¹⁾, D.A. Mustafin¹⁾

¹⁾Institute of Nuclear Physics, 1 Ibragimov Str., 050032 Almaty, Kazakhstan, i.ivanov@inp.kz, b.amanzhulov@inp.kz, ryskulov_nbd@mail.ru, a.kurahmedov@inp.kz, e.bikhert@inp.kz, d.mustafin@inp.kz

²⁾L.N. Gumilyov Eurasian National University, 2 Satpayev Str., 010008 Astana, Kazakhstan ³⁾Belarusian State University,

4 Nezavisimosti Ave., 220030 Minsk, Belarus, uglov@bsu.by, zlotski@bsu.by

⁴⁾Beijing Institute of Technology,

5 South Str., Zhongguancun, Haidian District, 100081 Beijing, China, jinke@bit.edu.cn

The changes in the morphology and elemental composition of equiatomic alloys based on vanadium after irradiation with ⁸⁴Kr¹⁵⁺ ions with an energy of 147 MeV and an ion fluence of 1×10^{13} - 1×10^{15} cm⁻² at room temperature and at 700°C were studied. No large defects except for chips were found on the surface of irradiated V, VNb, VNbTa, and high-entropy alloy (HEA) VNbTaTi. According to the results of energy-dispersive spectroscopy (SEM-EDS) analysis, the segregation of elements, particularly Ta, increases with the increase of fluence in VNbTa and VNbTaTi. In VNb, the segregation reaches a maximum at a fluence of 1×10^{14} cm⁻² and then decreases. When VNbTaTi is irradiated at 700°C, titanium segregation prevails. Moreover, using the Rutherford Backscattering

16-я Международная конференция "Взаимодействие излучений с твердым телом", 22-25 сентября 2025 г., Минск, Беларусь 16th International Conference "Interaction of Radiation with Solids", September 22-25, 2025, Minsk, Belarus

Spectroscopy (RBS) analysis, an increase in Ta concentrations with depth was found in samples irradiated with krypton ions with a fluence of 1×10¹³ cm⁻². VNbTa and VNbTaTi showed susceptibility to radiation-induced segregation, but the level of segregation is within the limits characteristic of similar HEAs studied in other works.

Keywords: ion irradiation; high-entropy alloys; radiation-induced segregation; elemental analysis; EDS; Rutherford Backscattering Spectroscopy.

Введение

Высокоэнтропийные сплавы (ВЭС), основанные на тугоплавких металлах, имеют высокую твердость и прочность при высоких температурах. ВЭС называют сплавы из четырех, пяти и более металлов, содержание которых в сплаве составляет около 5-35 ат.% [1].

Радиационная устойчивость ВЭС значительно зависит как от сложности состава, так и от составляющих элементов. Радиационная сегрегация может привести к охрупчиванию сплавов [1].

В данной работе мы исследовали изменения элементного состава эквиатомных сплавов ванадия при облучении высоко-энергетичсекими ионами криптона с целью изучения влияния состава ВЭС на их подверженность радиационной сегрегации.

Материалы и методы

Образцы были изготовлены в Пекинском Технологическом Институте методом дуговой плавки порошков чистых металлов V, Nb, Та, Ті в атмосфере аргона высокой чистоты. Затем были произведены отжиг полученных слитков при температуре 1150°С в течение 24 ч, холодная прокатка и повторный отжиг образцов при 1150°С в течение 72 ч.

V, VNb, VNbTa, VNbTaTi облучались на циклотроне DC-60 (Астана, Казахстан) ионами $^{84}{\rm Kr^{15+}}$ с энергией 147 МэВ и флюенсом ионов 1×10^{13} - 1×10^{15} см⁻² при комнатной температуре (КТ) и при 700°С. Часть образцов была предварительно облучена ионами $^{84}{\rm Kr^{14+}}$ с энергией 280 кэВ и флюенсом 5×10^{15} см⁻².

Морфология и элементный состав поверхности образцов исследовалась методами растровой электронной микроскопии (РЭМ) и энергодисперсионной спектроскопии (РЭМ-ЭДС) на электронном мик-

роскопе Hitachi TM3030 с использованием ускоряющего напряжения равного 15 кВ.

Глубинное распределение элементов были проанализировано на циклотроне DC-60 методом Резерфордовского Обратного Рассеяния (РОР) на пучке ионов ¹⁴N²⁺ с энергией 14 МэВ. Результаты РОР были обработаны в программе RUMP [2].

Результаты и их обсуждение

Согласно расчетам в программе SRIM-2013, представленным на рис. 1, при облучении ионами Kr с энергией 147 МэВ и флюенсом 1×10^{15} см⁻² максимум радиационных повреждений в образцах отличался незначительно. Концентрации имплантированных ионов малы из-за распыления.

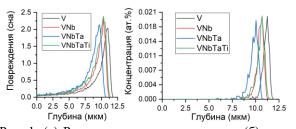


Рис. 1. (а) Радиационные повреждения и (б) дозы имплантации криптона в образцах, облученных ионами криптона с энергией 147 МэВ и флюенсом $1\times10^{15}~{\rm cm}^2$

На рис. 2 приведены снимки РЭМ, на которых не обнаружена эрозия поверхности, кроме небольших сколов размером до 4 мкм. В табл. 1 указан состав исходных образцов, полученный методом РЭМ-ЭДС.

Согласно результатам анализа, методом РЭМ-ЭДС, часть которых представлена на рис. 3, при облучении при КТ наибольшая сегрегация обнаружена для Та. Наибольшее увеличение концентрации Та обнаружено в VNbTa — 18.5% (5.15 ат.%) при флюенсе 1×10^{15} см⁻². В VNbTa, VNbTaTi сегрегация усиливается с флюенсом, а в VNb сегрегация достигает пика при 1×10^{14} см⁻².

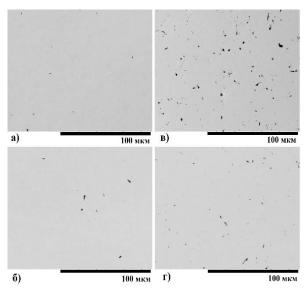


Рис. 2. Снимки РЭМ поверхности VNbTaTi а) необлученных, б) облученных ионами $^{84}{\rm Kr^{15+}}$ с энергией 147 МэВ и флюенсом 1×10^{15} см $^{-2}$ при КТ, в) облученных ионами $^{84}{\rm Kr^{14+}}$ с энергией 280 кэВ и флюенсом 5×10^{15} см $^{-2}$, г) образцы (в) облученные ионами $^{84}{\rm Kr^{15+}}$ с энергией 147 МэВ и флюенсом 1×10^{15} см $^{-2}$ при $700^{\circ}{\rm C}$

Табл. 1. Концентрации элементов в исходных образцах. а — необлученный, б — облученный ионами $Kr\ c$ энергией $280\ \kappa$ эB

Образ-	Концентрация элементов, ат.%			
цы	V	Nb	Ta	Ti
VNb (a)	49.9±0.5	50.1±1.1	-	-
VNbTa (a)	36.8±0.1	39.7±0.3	23.5±0.2	-
VNbTa- Ti (a)	26.0±0.1	27.6±0.2	18.4±0.2	28.0±0.1
VNb (б)	51.6±0.5	48.4±0.9		
VNbTa (б)	34.4±0.1	35.1±0.3	30.5±0.5	
VNbTaT i (б)	25.2±1.3	25.4±1.3	24.3±1.2	25.1±1.3

При 700°С величины сегрегации в образцах схожи со значениями при комнатной температуре, но усиливается сегрегация титана, а содержание тантала уменьшается. Концентрация Ті вырастает на 14.9% (3.73 ат.%) при флюенсе 1×10^{13} см⁻² и меняется с увеличением флюенса до 1×10^{14} см⁻² на вдвое меньшее значение.

Путем анализа спектров РОР, часть которых представлена на рис. 4, подтвердилось, что после облучения с увеличением глубины увеличиваются и концентрации атомов Та на величину до 48% (12 ат.%) в

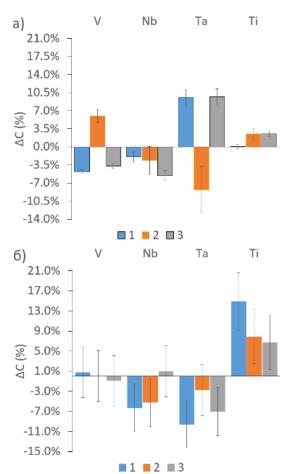


Рис. 3. Изменения концентраций элементов в VNbTaTi облученном ионами $^{84}{\rm Kr}^{15+}$ с энергией 147 MэB: а) при КТ, б) при 700°С относительно исходных образцов. Образцы облучены с флюенсом: $1-1\times10^{13}~{\rm cm}^{-2},\,2-1\times10^{14}~{\rm cm}^{-2},\,3-1\times10^{15}~{\rm cm}^{-2}$

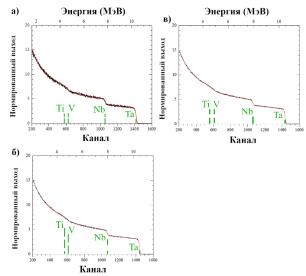


Рис. 4. Спектр POP VNbTaTi: а) исходного, б) облученного ионами $^{84}{\rm Kr^{15+}}$ с энергией 147 МэВ с флюенсом 1×10^{13} см $^{-2}$ при KT, в) облученного ионами $^{84}{\rm Kr^{15+}}$ при 700°С. Красная линия — спектр RUMP, черная линия — экспериментальный POP спектр

VNbTa и до 33% (8.6 ат.%) в VNbTaTi отно-сительно поверхностных эквиатомных концентраций (рис. 5).

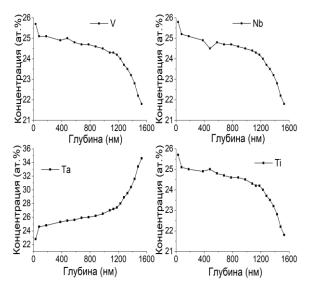


Рис. 5. Концентрации элементов согласно анализу результатов РОР в VNbTaTi, облученном ионами $^{84}{\rm Kr^{15+}}$ с энергией 147 МэВ с флюенсом 1×10^{13} см⁻². Погрешность менее 6%

Радиационная сегрегация в данной работе не превышает значения, обнаруженные в схожих работах, где локальная сегрегация может превышать 75% или 30 ат.% [3].

Радиационная сегрегация могла быть вызвана миграцией атомов и дефектов к границам зерен и кластерам дефектов, которая конкурирует с изотропным баллистическим смешиванием [1]. Также возможно происходит миграция атомов Та на большую глубину вследствие более низкой энергии миграции для Та через вакансии [4]. С повышением температуры облучения усиливается диффузия и образование точечных дефектов в ОЦК ВЭС и усиливается сегрегация легких элементов [1].

Заключение

На поверхности V, VNb, VNbTa, VNbTaTi, облученных тяжелыми ионами ⁸⁴Kr¹⁵⁺ с энергией 147 МэВ не обнаружены следы крупных дефектов.

Согласно анализа результатов РЭМ-ЭДС при КТ с увеличением флюенса усиливается радиационная сегрегация, особенно концентраций Та, на поверхности VNbTa, ВЭС VNbTaTi. При облучении VNbTaTi при 700°С наиболее выражена сегрегация атомов титана.

С помощью анализа методом РОР обнаружено увеличение концентраций Та с глубиной в VNbTa и VNbTaTi, облученных с флюенсом 1×10^{13} см⁻².

VNbTa и ВЭС VNbTaTi показали подверженность радиационной сегрегации, но в пределах значений сегрегации для аналогичных ВЭС в других исследованиях

Данное исследование финансировалось Комитетом науки Министерства науки и высшего образования Республики Казахстан (грант № АР19579188) и Министерством Энергетики Республики Казахстан (грант № ВR23891530).

Библиографические ссылки

- 1. Pickering E.J., Carruthers A.W., Barron P.J., Middleburgh S.C., Armstrong D.E.J., Gandy A.S. High-Entropy Alloys for Advanced Nuclear Applications. *Entropy* 2021; 23(1): 98.
- 2. Doolittle L.R. Algorithms for the rapid simulation of Rutherford backscattering spectra. *Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms*. 1985; 9(3): 344-351.
- 3. El-Atwani O., Li N., Li M., Devaraj A., Baldwin J.K.S., Schneider M.M., et al. Outstanding radiation resistance of tungsten-based high-entropy alloys. *Science Advances* 2019; 5(3): eaav2002.
- 4. Zhao S., Xiong Y., Ma S., Zhang J., Xu B., Kai J.J. Defect accumulation and evolution in refractory multi-principal element alloys. *Acta Materialia* 2021; 219: 117233.